Near-infrared-excited confocal Raman spectroscopy advances in vivo diagnosis of cervical precancer.
نویسندگان
چکیده
Raman spectroscopy is a unique optical technique that can probe the changes of vibrational modes of biomolecules associated with tissue premalignant transformation. This study evaluates the clinical utility of confocal Raman spectroscopy over near-infrared (NIR) autofluorescence (AF) spectroscopy and composite NIR AF/Raman spectroscopy for improving early diagnosis of cervical precancer in vivo at colposcopy. A rapid NIR Raman system coupled with a ball-lens fiber-optic confocal Raman probe was utilized for in vivo NIR AF/Raman spectral measurements of the cervix. A total of 1240 in vivo Raman spectra [normal (n=993), dysplasia (n=247)] were acquired from 84 cervical patients. Principal components analysis (PCA) and linear discriminant analysis (LDA) together with a leave-one-patient-out, cross-validation method were used to extract the diagnostic information associated with distinctive spectroscopic modalities. The diagnostic ability of confocal Raman spectroscopy was evaluated using the PCA-LDA model developed from the significant principal components (PCs) [i.e., PC4, 0.0023%; PC5, 0.00095%; PC8, 0.00022%, (p<0.05)], representing the primary tissue Raman features (e.g., 854, 937, 1095, 1253, 1311, 1445, and 1654 cm(-1)). Confocal Raman spectroscopy coupled with PCA-LDA modeling yielded the diagnostic accuracy of 84.1% (a sensitivity of 81.0% and a specificity of 87.1%) for in vivo discrimination of dysplastic cervix. The receiver operating characteristic curves further confirmed that the best classification was achieved using confocal Raman spectroscopy compared to the composite NIR AF/Raman spectroscopy or NIR AF spectroscopy alone. This study illustrates that confocal Raman spectroscopy has great potential to improve early diagnosis of cervical precancer in vivo during clinical colposcopy.
منابع مشابه
Near-infrared Raman spectroscopy for in vitro detection of cervical precancers.
In this study, we investigate the potential of near-infrared Raman spectroscopy to differentiate cervical precancers from normal tissues, inflammation and metaplasia and to differentially diagnose low-grade and high-grade precancers. Near infrared Raman spectra were measured from 36 biopsies from 18 patients in vitro. Detection algorithms were developed and evaluated relative to histopathologic...
متن کاملDetection and Characterization of Human Teeth Caries Using 2D Correlation Raman Spectroscopy
Background: Carious lesions are formed by a complex process of chemical interaction between dental enamel and its environment. They can cause cavities and pain, and are expensive to fix. It is hard to characterize in vivo as a result of environment factors and remineralization by ions in the oral cavity. Objectives: The development of a technique that gives early diagnosis which is non-invasi...
متن کاملIn vivo diagnosis of colonic precancer and cancer using near-infrared autofluorescence spectroscopy and biochemical modeling.
The aim of this study is to evaluate the biochemical foundation and clinical capability of an image-guided near-infrared (NIR) autofluorescence (AF) spectroscopy technique for in vivo diagnosis of colonic malignancies during clinical colonoscopy. A novel endoscopic fiber-optic AF system was utilized for in vivo NIR AF measurements at 785 nm excitation. A total of 263 in vivo NIR AF spectra of c...
متن کاملConfocal microscopy: imaging cervical precancerous lesions.
OBJECTIVES We explore the clinical potential of reflectance and fluorescence confocal microscopy to image the morphologic and biochemical changes associated with precancer, in order to aid in the detection and diagnosis of cervical dysplasia. METHODS Cervical epithelial tissue samples imaged ex vivo or in vivo were obtained from M. D. Anderson Cancer Center and Lyndon B. Johnson Hospital in H...
متن کاملRapid Fiber-optic Raman Spectroscopy for Real-Time In Vivo Detection of Gastric Intestinal Metaplasia during Clinical Gastroscopy.
We report a unique simultaneous fingerprint (FP) and high-wavenumber (HW) Raman spectroscopy technique coupled with a beveled fiber-optic Raman probe for improving in vivo detection of gastric intestinal metaplasia (IM)-precancerous lesions in real-time during clinical gastroscopy. A total of 4,520 high-quality in vivo FP/HW gastric Raman spectra (normal = 4,178; IM = 342) were acquired from 15...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of biomedical optics
دوره 18 6 شماره
صفحات -
تاریخ انتشار 2013